数据结构1.04--递归

数据结构与算法笔记(四)————递归

递归需要满足的三个条件

只要同时满足以下三个条件,就可以用递归来解决。

  • 一个问题的解可以分解为几个子问题的解
    何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。
  • 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样 比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。
  • 存在递归终止条件
    把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。

递归代码要警惕堆栈溢出

函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。

递归代码要警惕重复计算

除此之外,使用递归时还会出现重复计算的问题。
假设递归为:

1
2
3
f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)

想要计算f(5),需要先计算f(4)和f(3),而计算f(4)还需要计算f(3),因此,f(3)就被计算了很多次,这就是重复计算问题。为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的f(k)。当递归调用到f(k)时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免刚讲的问题了。
除了堆栈溢出、重复计算这两个常见的问题。递归代码还有很多别的问题。在时间效率上,递归代码里多了很多函数调用,当这些函数调用的数量较大时,就会积聚成一个可观的时间成本。在空间复杂度上,因为递归调用一次就会在内存栈中保存一次现场数据,所以在分析递归代码空间复杂度时,需要额外考虑这部分的开销,比如我们前面讲到的电影院递归代码,空间复杂度并不是O(1),而是O(n)。

怎么将递归代码改写为非递归代码?

递归有利有弊,利是递归代码的表达力很强,写起来非常简洁;而弊就是空间复杂度高、有堆栈溢出的风险、存在重复计算、过多的函数调用会耗时较多等问题。所以,在开发过程中,我们要根据实际情况来选择是否需要用递归的方式来实现。
例如:

1
2
3
4
5
6
 int ret = 1;
for (int i = 2; i <= n; ++i) {
ret = ret + 1;
}
return ret;
}

可以改写成:

1
2
3
4
5
6
7
8
9
10
11
12
13
int f(int n) {
if (n == 1) return 1;
if (n == 2) return 2;
int ret = 0;
int pre = 2;
int prepre = 1;
for (int i = 3; i <= n; ++i) {
ret = pre + prepre;
prepre = pre;
pre = ret;
}
return ret;
}

那是不是所有的递归代码都可以改为这种迭代循环的非递归写法呢?
笼统地讲,是的。因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们自己在内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。
但是这种思路实际上是将递归改为了“手动”递归,本质并没有变,而且也并没有解决前面讲到的某些问题,徒增了实现的复杂度。

-------------本文结束感谢您的阅读-------------