数据结构1.03--栈、队列

数据结构与算法笔记(三)————栈、队列

支持动态扩容的顺序栈

在初始化栈时需要事先指定栈的大小。当栈满之后,就无法再往栈里添加数据了。尽管链式栈的大小不受限,但要存储next指针,内存消耗相对较多。那如何基于数组实现一个可以支持动态扩容的栈呢?
实现数组动态扩容时,当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。
所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。

对于出栈操作来说,我们不会涉及内存的重新申请和数据的搬移,所以出栈的时间复杂度仍然是O(1)。但是,对于入栈操作来说,情况就不一样了。当栈中有空闲空间时,入栈操作的时间复杂度为O(1)。但当空间不够时,就需要重新申请内存和数据搬移,所以时间复杂度就变成了O(n)。

也就是说,对于入栈操作来说,最好情况时间复杂度是O(1),最坏情况时间复杂度是O(n)。那平均情况下的时间复杂度又是多少呢?这个入栈操作的平均情况下的时间复杂度可以用摊还分析法来分析。
为了分析的方便,我们需要事先做一些假设和定义:
栈空间不够时,我们重新申请一个是原来大小两倍的数组;
为了简化分析,假设只有入栈操作没有出栈操作;
定义不涉及内存搬移的入栈操作为simple-push操作,时间复杂度为O(1)。
如果当前栈大小为K,并且已满,当再有新的数据要入栈时,就需要重新申请2倍大小的内存,并且做K个数据的搬移操作,然后再入栈。但是,接下来的K-1次入栈操作,我们都不需要再重新申请内存和搬移数据,所以这K-1次入栈操作都只需要一个simple-push操作就可以完成。这K次入栈操作,总共涉及了K个数据的搬移,以及K次simple-push操作。将K个数据搬移均摊到K次入栈操作,那每个入栈操作只需要一个数据搬移和一个simple-push操作。以此类推,入栈操作的均摊时间复杂度就为O(1)。

栈的应用

栈在函数调用中的应用
操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构,用来存储函数调用时的临时变量。每进入一个函数,就会将临时变量作为一个栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。

栈在表达式求值中的应用
比如:34+13*9+44-12/3。对于这个四则运算,编译器就是通过两个栈来实现的。其中一个保存操作数的栈,另一个是保存运算符的栈。我们从左向右遍历表达式,当遇到数字,我们就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较。如果比运算符栈顶元素的优先级高,就将当前运算符压入栈;如果比运算符栈顶元素的优先级低或者相同,从运算符栈中取栈顶运算符,从操作数栈的栈顶取2个操作数,然后进行计算,再把计算完的结果压入操作数栈,继续比较。

栈在括号匹配中的应用

除了用栈来实现表达式求值,我们还可以借助栈来检查表达式中的括号是否匹配。
我们同样简化一下背景。我们假设表达式中只包含三种括号,圆括号()、方括号[]和花括号{},并且它们可以任意嵌套。比如,{[{}]}或[{()}([])]等都为合法格式,而{[}()]或[({)]为不合法的格式。
我们用栈来保存未匹配的左括号,从左到右依次扫描字符串。当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号。如果能够匹配,比如“(”跟“)”匹配,“[”跟“]”匹配,“{”跟“}”匹配,则继续扫描剩下的字符串。如果扫描的过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。
当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明有未匹配的左括号,为非法格式。

如何实现浏览器的前进和后退功能?

我们使用两个栈,X和Y,我们把首次浏览的页面依次压入栈X,当点击后退按钮时,再依次从栈X中出栈,并将出栈的数据依次放入栈Y。当我们点击前进按钮时,我们依次从栈Y中取出数据,放入栈X中。当栈X中没有数据时,那就说明没有页面可以继续后退浏览了。当栈Y中没有数据,那就说明没有页面可以点击前进按钮浏览了。
比如顺序查看了a,b,c三个页面,我们就依次把a,b,c压入栈,当通过浏览器的后退按钮,从页面c后退到页面a之后,我们就依次把c和b从栈X中弹出,并且依次放入到栈Y。这个时候又想看页面b,于是又点击前进按钮回到b页面,我们就把b再从栈Y中出栈,放入栈X中。这个时候,通过页面b又跳转到新的页面d了,页面c就无法再通过前进、后退按钮重复查看了,所以需要清空栈Y。

队列在线程池等有限资源池中的应用

一般有两种处理策略。第一种是非阻塞的处理方式,直接拒绝任务请求;另一种是阻塞的处理方式,将请求排队,等到有空闲线程时,取出排队的请求继续处理。那如何存储排队的请求呢?
我们希望公平地处理每个排队的请求,先进者先服务,所以队列这种数据结构很适合来存储排队请求。队列有基于链表和基于数组这两种实现方式。这两种实现方式对于排队请求又有什么区别呢?
基于链表的实现方式,可以实现一个支持无限排队的无界队列(unbounded queue),但是可能会导致过多的请求排队等待,请求处理的响应时间过长。所以,针对响应时间比较敏感的系统,基于链表实现的无限排队的线程池是不合适的。
而基于数组实现的有界队列(bounded queue),队列的大小有限,所以线程池中排队的请求超过队列大小时,接下来的请求就会被拒绝,这种方式对响应时间敏感的系统来说,就相对更加合理。不过,设置一个合理的队列大小,也是非常有讲究的。队列太大导致等待的请求太多,队列太小会导致无法充分利用系统资源、发挥最大性能。
除了前面讲到队列应用在线程池请求排队的场景之外,队列可以应用在任何有限资源池中,用于排队请求,比如数据库连接池等。实际上,对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。

-------------本文结束感谢您的阅读-------------